
Tolerant (Parallel) Programming

David C. DiNucci

MRJ Technology Solutions, Inc.
NASA Ames Research Center, M/S T27A-2

Moffett Field, CA 94035

Abstract - In order to be truly portable, a program must be
tolerant of a wide range of development and execution environ-
ments, and a parallel program isjust one whichmust be tolerant
of a very wide range. This paper first defines the term "tolerant
programming", then describes many layers of tools to accom-
plish it. The primary focus is on F-Nets, a formal model for
expressing computation as a folded partlal-ordering of opera-
tions, thereby providing an archltecture-independent expression
of tolerant parallel algorithms. For implementing F-Nets, Coop-
erative Data Sharing (CDS) is a subroutine package for imple-
menting communication efficiently in a large number of
environments (e.g. shared memory and message passing). Soft-
ware Cabling (SC), a very-high-level graphical programming
language for building large F-Nets, possesses many of the fea-
tures normally expected from today's computer languages (e.g.
data abstraction, array operations). Finally, L23 is a CASE tool
which facilitates the construction, compilation, execution, and
debugging of SC programs.

I. INTRODUCTION

The subgoals of parallel processing are very similar to the

subgoals of software engineering in general--i.e, the decom-

position of a large problem into smaller tasks or modules, the

precise expression of the scope of data and the semantics of

sharing and communicating data efficiently and safely

between modules. In fact, differentiating parallel software

engineering from traditional software engineering can be a

mistake, since doing so may lead one to believe that a parallel

program is engineered in a different (and perhaps even more

roundabout) way than a "real" program. Parallel software

engineering will only come into its own when parallel pro-

grams are considered "real", and the ability for a program to

run efficiently on a parallel machine is just another desirable

feature which the software possesses. A corollary is that tools,

languages, and methodologies for "parallel" programming

must be useful enough to facilitate any kind of programming.

This may seem like a lot to ask. After all, parallel software

engineering seems to lag behind sequential in virtually every

area: formal models, languages, tools, development mad

debugging strategies. Of these, formal models constitute the

linchpin. With an adequate formal model, the other methodol-

ogies can be developed to exploit the properties of that model.

To facilitate the needs above, the model must be tolerant of,

but not dependent upon, the sharing of memory or the passing

of messages. Likewise, it must be adaptable to different lan-

guages, different architectures, different anaounts of parallel-
ism (including none at all), and the possible presence of non-
determinism.

The objective of this paper is to present a tolerant approach
to software engineering. That is, rather than engineering a
product for a particular parallel environment, the goal is to

engineer one which is tolerant of many different environ-
merits, including parallel environments. The paper will first
describe the full meaning of tolerant programming, then will
present a simple yet formal model for (parallel) computation,
called F-Nets, which embodies that meaning and thereby
serves as the basis for a host of other tools. Finally, a brief
description of some of those tools is given, followed by some
conclusions.

H. TOLERANTPROGRAMMING

Although the term "tolerant programming" could be used to
describe tolerance to any number of traits, those favored here
are concurrency, latency, semantics, changing e_wironment,
bugs, and language. Tolerance of these traits refers to the abil-
ity of a program or programming methodology to work well
independently of the values of these traits. Some techniques
which might be used to obtain tolerance are described under
each heading, but tolerance may be achieved through either
user effort or automatically through tools (e.g. compilers). In
fact, tolerance often relies on the ability to infuse the program
with potentially useftfl information, and this may not be possi-
hie without the aid of tools.

A. Concurrency

Concurrency tolerance refers to providing the opportunity
for scaling while not sacrificing efficiency on less-scalable
platfomas. For example, a large program can be decomposed
into relatively small parts which may be able to execute con-

currently, but there should also be a mechanism to efficiently
recompose these into larger portions when parallel execution
is not possible.

To express program decomposition, constructs which are
well defined and easily understood in both sequential and par-
allel environments should be used. Traditionally, loops have
filled this role, but there are better examples, such as flmctions
and atomic transactions.

B. Latency

Latency tolerance refers to the ability to adapt to high-

latency enviro_unents without impacting efficiency in low-

latency environments. Such tolerance is gained primarily by

providing infomaation about the expected data movement pat-

terns. For example, whenever possible, the programmer
should:

1) Express need for data long before it is used (and maybe

even before process starts running--i.e, staging),

2) Express where data will be used next, even before it is

requested there,

3) Refrain from waiting for last version of data to be con-

sumed before creating next version (i.e. qneueing),

4) Block (group) data to allow multiple data items to move

as a unit whenever it is requested or forwarded, thus cutting

latency/byte,

5) Pipeline computation.

C. Semantics

Semantic tolerance refers to the recognition that different

environments may have different default semantics, so the

desired semantics (or lack thereof) should be clearly

expressed. For example, shared memory and message passing
are different standard semantic combinations for communica-

tion, and using one combination globally throughout the pro-

gram can make the program much less efficient in an

environment which implements the other by default. A better

approach is to delineate the application's semantics for each

data communication, so that the required semantics can be

implemented in the most efficient way in the available envi-
ronment--e.g.

1) Destructive read (i.e. read on non-empty, dequeue)

2) Destructive write (i.e. standard over-write)

3) Non-destructive write (i.e. enqueue), or
4) Non-destnmtive read (i.e. standard read)

In some cases, it is appropriate to express the lack of a spe-

cific required semantics, especially as it relates to the ordering

of operations. For example, a designer may not care about the

order in which some commutative ariflmaefic operations are

performed, nor perhaps the order in which some outputs are
produced. Such an expression of acceptable non-detenninJsm

may make a program run faster in environments where loads

or processor speeds vary. It is important, however, to ensure

that non-determinism does not sneak into the design.

D. Changing Em'ironment

Changing Environment tolerance refers to adaptation to an

environment which changes as the program is running. Envi-
ronment Tolerance includes the well-known Fault Tolerance,

which is tolerance to processors which are made unavailable

in an abrupt and unannounced fashion, but it also includes tol-

erance to any circumstances when processors leave in a pre-

announced and well-defined way, and/or when processors

become available which were not previously present. This tol-

erance takes that the computer(s) will likely be shared by
many users, so the progranlming ariel/or scheduling method

should allow for efficient sharing of limited resources.

E. Bugs

Bug tolerance relates to the provision of adequate debug-
ging tools and mechanisms which provide the ability to find

bugs and wNch limit the scope of bugs if they exist so that a

small bug in one part of the program will have limited effects

in other parts. This includes the ability to find unwanted non-

determinism and to efficiently record desired non-determinis-

tic choices made during execution of a parallel program so
that it can be reliably debugged and analyzed in a cyclic man-
ner.

E Language

Language tolerance describes the ability of a program-

rrting methodology to retain its utility even when the specific

progranmaing language used for implementation changes.

This allows the implementor the flexibility to use the appro-

priate language for the job, or to change the language for any

number of reasons, without requiring totally different engi-
neering methodologies.

III. F-NETS

This section will informally describe a model for parallel

computation called F-Nets. Although this model is not widely

known, it is similar in many ways to Actors[1], Petri Nets[10],

Turing Machines, Finite State Machines, datafiow, and

CCS[9], all of which are well known. It was originally devel-

oped as a refinement of the Large-Grain Data Flow (LGDF)

parallel programming approach[2], and early versions went by

the name LGDF2 [6]. A full, formal description (containing
an axiomatic semantics) can be found in the author's Ph.D.

dissertation[5], although the version here has been somewhat

simplified (i.e. by merging the "instruction" and "operation"

abstractions). This paper will present only an operational

semantics, and using only informal English, but tNs wiii be
sufficientto illustrate the value of the model.

The model will he described in four parts: its syntax, its

semantics, its efficient expression on real computers, and

some favorable practical and theoretical properties it pos-

sesses which relate to tolerant programming.

A. Syntax

An F-Net can be considered as being similar to a "luring

Machine, having a (possibly-infinite) tape, separated into

squares. Each square contains a mutable value, called the data

state of the square, and a mutable color, called its control

i -

state. Call the set of all possible data states S.

Along with the tape, the F-Net consists of a possibly-infi-
nite set of transitions. Associated with each transition is a set

of colored (non-white) heads. Each head is permanently
attached to one square--i.e, the tape does not move relative to
the heads. Each head is either a read head, a write head, a

read-write head, or a nodata head (i.e. a head having
neither read nor write capability). The heads for a given tran-
sition are enumerated from 1 to n, where n can be different for
each transition. No two heads from the same transition are

attached to the same square.

Each transition has an associated firing function, which can
be visualized as a table. If the number of read and read-

write heads attached to the transition is r, the table has
rlSl entries--i.e, one entry for each possible combination of r

symbols under those heads. Each entry contains n colored
(possibly white) symbols--i.e, one symbol corresponding to
each head.

Any of the read and nodata heads can be declared "pre-
dictable c" which is a declaration that the symbol correspond-
ing to the head in all of the firing function entries has the color
C.

B. Operational Semantics

An F-Net works as follows. The machine begins in an ini-
tial state consisting of a predetermined symbol and the color
green to each square. Then, repeatedly, a ready transition is
located (subject to the liveness/fairness role below) and evalu-

ated until there are no more ready transitions. A ready transi-
tion is defined as one for which each head is the same color as

the square to which it is attached. Evaluation (orfiring) con-
sists of finding the entry in the table corresponding to the sym-

bols under the read and read-write heads, and replacing
the color of the squares under all heads with the color of the
corresponding symbol from the table entry. For each write and
read-write head, the symbol (i.e. data state) of the square is
also changed to the corresponding symbol from the table
entry.

The liveness/fairness rule states that if a transition is ready,
then either it or some other ready transition which shares a
square with it must be evaluated eventually (i.e. will not be
eternally preempted) in the repeat cycle described above.

Note that for read and nodata heads, the symbols in the
table serve no purpose other than as place-holders for the
color at those positions, and that for predictable heads, even
the colors in the table are superfluous. Note also that if any
square becomes colored white during the course of an F-Net
execution, no transitions attached to that square will ever be
ready again, since heads cannot be white.

There is never a need to consider the relative ordering of
tape squares, so F-Nets are often represented graphically with

the squares separated into disjoint rectangles. Each transition
is shown by a circle, and each head by a colored line between

the transition circle and the tape square rectangle. Arrowheads
denote whether the head is read-write (both ends), read

(transition end), write (square end), or nodata (no arrow-
heads). Although the firing fimction is rarely represented
graptfically, the colors which might be assigned to each head
are often represented by colored dots near the counection
between the line (bead) and the tape square (rectangle). Read
and nodata heads with only one colored dot are implied to
be predictable.

C. Real-World Implementation

To understand how the F-Nets model pertains to tolerant
programming, it is first important to understand how its com-

ponents manifest themselves in the real world. Only two such
components will be discussed here: the firing functions and
the tape squares. The remainder of the F-Net is typically rep-
resented in the same graphical form previously described.

In a standard computer, the firing function of each transi-
tion of an F-Net is normally implemented as a small determin-
istic (usually sequential) subprogram. That is, instead of being
a table, the function is represented by the mapping of inputs to
outputs implied by the code. The data state of each square is

implemented as a standard data structure. This leaves only the
colors (i.e. control state) to be handled in a somewhat non-
standard manner.

When a transition fires, the data state of the squares under
the transition's heads are passed to the subprogram as argu-
ments. Although nodata heads can be neither read nor writ-
ten, they are also supplied as a special kind of argument. At
any time during the execution, the subprogram can execute a
special statement, of roughly the form

give square color

which declares that the subprogram will make no further
accesses to argument square, and that the square should be
assigned the new color col or. By executing one such state-
ment for each of its arguments (i.e. squares), the subprogram
expresses a mapping from the initial state of its read and read-
write squares to the final state of its read and read-write
squares and the new color for all of its squares, as it is
required to do by the formal F-Net semantics. If a transition
subprogram does not execute a give statement for some of
its arguments, those squares _ffecfively become white.

The word "repeatedly" in the semantics (third sentence)
suggests that only one transition can be evaluating at a time,
but this leads to both practical and theoretical problems. Prac-
tically, requiring sequential execution obviously decreases the
model's value in the realm of parallel processing. Theoreti-
cally, sequential execution would require that a scheduler
know when the evaluation of a transition subprogram was fin-
ished so that it could know that the next ready transition could

be initiated. This means that, at every point in time, the sched-
uler would be required to decide whether ft_her evaluation of
the subprogram might lead to execution of more give state-

ments (i.e. for arguments for which they had not already been

executed). In other words, a correct sequential scheduler

would be required to either solve the (impossible to solve)
halting problem, or to conceivably let subprograms which

never execute give statements for some ar_ments execute

forever and thus contradict the required liveness properties.

Fortunately, the stated semantics can be shown to be identi-
cal to these revised semantics:

"An F-Net works as follows. The machine be#ns in

an initial state Then, repeatedly, a ready transition

is located and initiated. A ready transition is Initi-

ation means changing the color of all the squares
tinder the transition's heads to white, and then begin-

ning evaluation of the transition. Evaluation ..."
In this case, the scheduler does not need to wait for one

transition to finish its evaluation before initiating the next. It

yields the same result as the previously-stated semantics
because each transition is atomic by virtue of being a two-

phase transaction[g]: it has a growing phase where it acquires

all of its resources (i.e. changes all of its squares to white,

effectively locking them), followed by a shrinking phase
where it relinquishes them (i.e. gives them a color). Although

two-phase transactions can sometimes deadlock, the fact that

the revised semantics still initiates the transitions "repeatedly"

avoids this problem, and even this sequentiality can be

avoided as long as the initiation of a transition is ensured to be

an atomic action (e.g. by enclosing it in a critical section cov-

ered by a lock), or by changing the color of the tape squares to
white in a predetermined global order.

Predictable heads can provide a great opportunity for opti-

mization. Since only read and nodata heads are predict-

able Coy definition), the new data state and control state for the

associated square is known the instant the transition fires. This
means that the scheduler itself can pre-give the square a

color during the scheduling process and immediately schedule

other transitions which become ready as a result.

The control state (color) of each square is implemented as
some internal state which allows a scheduler to determine

which transitions (subprograms) to schedule. It is often most

efficient to distribute this control state among the transitions.
That is, rather than representing the control state of each

square in a particular location, each transition is given a "rea-

sons count"---i.e, an integer which describes the number of

the transition's heads which are over the wrong color of

square. Each time a transition is initiated or executes a give

statement, the appropriate reasons counts are adjusted (within
a critical section), and new transitions are scheduled (i.e. initi-

ated) whenever their reasons counts reach zero[7].

In distributed memory enviromnents, give statements

associated with write or read-write heads often map

straightforwardly into message sends which pass the data

state associated with the square to the next process that will

read it. There are, however, some circumstances where the

next process to read the data ca_m0t be immediately. In that

case, the data state can either be left with the transition to be

requested later when the reader is finally determined by the

scheduler, or it can be forwarded to a location which is physi-

cally closer to all potential readers.

D. Tolerance and Other Properties ofF-Nets

The visual nature of F-Nets springs from the nature of com-

putation and the relationship between algorithms and compu-

tations. In the sequential world, a computation is usually

considered as a sequence of operations. One possible algo-

rithm to express a particular sequential computation is a

straight-line algorithm which simply performs each of the

operations in the proper order, but the power of programming

is obtained by "folding up" this straight-line algorithm with

loops and conditionals, so that it takes much less space. Dur-

ing execution, such a "folded up" algorithm both performs the
operations designated therein and unfolds into a sequence at

the same time, and the unfolding itself can be affected by the
inputs provided to the algorithm.

Similarly, a parallel computation is often considered as a

partial ordering of operations [11]. However, the term "paral-

lel algorithm" has heretofore not had a very formal definition.

An F-Net algorithm is an almost perfect analog to a sequential

algorithrn_i.e, it is a folded up partial ordering of operations,
which is unfolded as it is executed. This "'folded partial order-

ing" description explains why F-Nets are represented most

naturally as graphs.

Unlike sequential algorithms, some F-Net algorithms may
unfold into different partial orderings, even when given the

same inputs (or in this case, initial markings). This nondeter-

minism is a desirable characteristic, as described earlier under

semantic tolerance, as long as it is not introduced by accident.

Potential non-determinism in an F-Net can be detected syntac-

tically, so tools can allow the user to verify that it is desired.

Specifically, an F-Net may be non-detemainistic if and only if
it contains two (or more) transitions which have Iike-color

heads on the same square (say sl) and those same transitions

do not have differing-color heads on another "shared" square

(say s2). The non-deterministic choices made during execu-

tion can be recorded efficiently by just recording the order in
which the stated transitions fire--i.e, one bit recorded for each

execution of the offending transitions--and this information

can he used during debugging to ensure repeatability.

Language tolerance is achieved in F-Nets because the

model requires only that each firing function represent a deter-

ministic mapping from some set of data values to some new

set of data values and to a color for each head. The representa-

tion of this mapping is not restricted: e.g. it can be in the form

of an imperative subroutine, as described, or in terms of a
fmactional, dataflow, or logic program fragment I. This pro-

I. Nofe, however, that F-Nets support update-in-place through the
use of read-write heads, so using other paradigms may inflict

additional copying in some cases when using these heads.

vides maximum flexibility to use any language, and even to

use different languages for different transitions.

The fact that each transition represents a simple mapping,

independent of anything else going on at the time, is indicated

by the (first) semantics. That is, even though transitions may

execute concurrently, they must act as though they are execut-

ing one by one. This not only provides conctwrency tolerance,

since the constructs being used have identical behavior in par-

allel and sequential environments, but also bug tolerance,

since errors in implememing a transition can only lead to

errors in the mapping represented by that transition. More-

over, since the semantics of the language used to implement

the transitions does not change in a parallel environment l,

standard sequential debugging tools can be used to debug the

transition mappings. This is in marked contrast to traditional

shared-memory or message-passing programming, where the

behavior of any one program or program fragment can only be

described by including the possible asynchronous arrival of

messages and/or data, and therefore by including all possible

global states of the system.

F-Nets achieve latency tolerance through all of the tech-

niques mentioned in the previous section. Since each transi-

tion is endowed with the knowledge of the data that it will

need to perform its task, this data can be forwarded (staged)

by the scheduler to the processor which will execute the firing

function, even before the function executes. Latency is amor-

tized by communicating an entire tape square (which could

comprise a large data structure) at a time, leaving fine-grain

access to its components to occur in a low-latency environ-
ment.

Queuing of multiple versions of a tape square is also sup-

ported by the model, due to predictable heads. Say, for exam-

ple, that one transition has a green "predictable red" read

head on a tape square, and another has a red write head on

the same square which changes the color to green. When the
first transition fires, the scheduler has the option of immedi-

ately changing the square color to red, allowing the second

(writing) transition to execute again even while the reader

continues to execute. Of course, in this case, the scheduler

must ensure that the writer uses a separate memory area to
create the "next" version of the data state for the tape square.

Transitions are extremely tolerant to both concurrency and

dynamic environment considerations due to their atomic,

stateless properties. Specifically, by ensuring that each transi-

tion is relatively small, an algorithm can expand into any num-

ber of available processors, and problems related to the loss or

migration of execution state can be avoided completely by

backing out of partially-executed transitions. Nevertheless,
unlike some functional and dataflow models where data must

1. Actually, inclusion within an F-Net may incm_e in the number

of possible error conditions in a program fragment---e.g, when

access is made to an argument after a give statement has already

executed for it--and this is technically a semantic difference.

be copied from one actor (function, program, clmre, etc.) to

the next, executing multiple sequentially-composed transi-

tions on the same processor adds virtually no overhead above
a standard subroutine-call interface.

IV. MAKING F-NETS PRACTICAL

Even if the theoretical model of F-Nets has some desirable

properties, there remain the practical tasks of implementing F-

Nets efficiently on real machines and implementing large pro-

granls in F-Nets. These tasks require the availability of lan-

guages, tools, and methodologies, some of which are briefly

described here. A low-level subroutine library, called Cooper-

ative Data Sharing (CDS), which facilitates the efficient

implementation of the F-Net model on real architectures will

be briefly described, followed by some features of a high-level

graphical programming language, Software Cabling (SC),

which facilitates the construction of large F-Nets. Finally, a
CASE tool called L2 s will be mentioned which is used to

design, implement, compile, execute, and debug SC programs.

A. Cooperative Data Sharing

Cooperative Data Sharing (CDS) is a subroutine package

which embodies the communication requirements of F-Nets

without the dataflow-like run-time semantics[4]. Although a

major goal of CDS was to aid in the implementation of F-Nets

on real computers, it can also be used as a standard communi-

cation substrate for a variety of other purposes. In message-

passing environments, it serves a role much like MPI and

PVM, but it also works efficiently in shared-memory environ-

ments because of the lack of copying allowed by its seman-
tics[3].

In CDS, F-Net data states are implemented as regions of

specially-tagged dynamic memory. Pointers to these regions

can be passed between any processes. CDS automatically

manages the remapping and queuing of these pointers, the

migration of regions if pointers are passed between remote

processes, the sharing of regions by multiple readers on the

same processor, the fetching of regions from remote proces-

sors, and the initiation of handlers based upon pointer manipu-
lation. While CDS has been implemented on top of UDE

other projects such as U-Net [12] suggest that extremely effi-

cient lover-level implementation is possible.

B. Software Cabling

Software Cabling (SC) is a visual programming language

for building very large F-Nets. An SC program effectively

compiles into an F-Net while ensuring that the correspon-

dence between the SC program and the F-Net is always appar-

ent. This allows SC to inherit many of the desirable properties

of the F-Nets model while compensating for some of F-Net's

apparent deficiencies for "real" programming.

F-Nets do not have a good notion of input and output. An

SCprogramdynamicallybecomespartof thesurrounding
operatingsystem,thusallowingit toaccessI/Odevicesand
btfffersasspecialtapesquares.

AnF-Netis justa flatnetworkof squaresandtransitions,
andlacksanynotionofmodularity(oflaerthanthecoimotation
ofeachtransitionasamodule).SCprovidesmechanismsfor
hierarchicallycomposinganF-Netoutof smallernetworks
andallowstheabilityto"clone"thesesub-networks.Infact,
sincesuchasub-networkcontainsprogramfragments(transi-
tions)whichcanbeinitiatedbydata(tapesquares)outsideof
thenetwork,andalsocontainsdata(tapesquares)whichare
notaccessiblefromtheoutside,thesesub-networkseffec-
tivelyform abstractdatatypes,or classes,leadingto an
object-orientedcodingstyle,usableevenwhenthetransitions
areimplementedinlanguagessuchasFortran77.

AnF-Netis a staticconstruct.Thisfactwouldseemto
interferewithitsabilitytoadequatelyexpressdataparallelism
andotherparallelismwhichchangesdynamicallybasedupon
data.It wouldalsoseemto interferewithchangingdepen-
dencestructureswhichcanresultfromtheinter-relationships
of arraysubscripts.SCcanexpressdynamicparallelism(i.e.
theabilityof F-Netfragmentstodisappearorbereplicated)
byrecognizingthatanF-Netis aconceivablyinfinitecon-
struct,anddynamicportionscanbeconsideredaspartsofthe
F-Netthatwerealwaysstaticallypresentbutwerenotableto
executedueto thecolorof sometapesquares.SCsupports
dynamically-sizedarraysandarraysubscriptingusingthe
sameapproach---i.e,bymodelingeacharrayelementorarray
sectionasanindividualtapesquareandensuringthataccess
tothatsquareis ineffectcontrolledbythecolorthatsquare
(oranother).

C. L 23

L23 is a toolset (under construction) used to design, imple-

ment, compile, execute, and debug SC programs 1. It is cen-

tered around a graphical editor, which must necessarily be as
utilitarian as the standard text editors used to maintain textual

programs. Debugging is to be supported both at the level of

the F-Net (i.e. by animating the graphical SC program) and

the levei of i!adividuai processes _i,e_ usingstandard sequential
debuggers). Finding non-determinism, and instrumenting and

replaying non-detemainistic progranas, is also being sup-

ported. Network fragments can also be tested and debugged

individually.

V. CONCLUSION

Tolerant progra_ing is possible. Given a satisfactory the-

oretical model as a basis, many of the difficulties related to

parallel progranlming can be surmounted. F-Nets not only

1. The name of this tool, pronounced "ell two three", is a simplifi-

cation of the name "parallel tools" = "pair ell ell two ells" = (LL
LL)(LL) = (LL) 3 = L23

i

provides a formal and natttral expression for parallel algo-

rithms, but the resulting tools can benefit all programming by

providing language and platform interoperability and by pro-

viding formal methods and notations for program design and
implementation.

ACKNOWLEDGMENT

The idea of "tolerant programming" benefited from discus-

sions with colleagues Robert Hood and Louis Lopez at NASA

Ames. The F-Nets model was developed during my studies at

Oregon Graduate Institute, where it begata with the research

and helpful feedback of my advisor Robert Babb, and was fur-

thered by feedback from my committee (Michael Wolfe,

Harry Jordan, and Richard Kieburtz) and early discussions

with Dick Hamlet. The CDS package was developed at NASA

Ames Research Center, where support was provided by the

NAS program and HPCC.

REFERENCES

[1] G. Agha, "Actors: A model of concurrent computation in distributed sys-

tems", MIT Press, 1986.

[2] R.G. Babb II and D. C. DiNueci, "Design and implementation of paraUel

algorithms with Large-Grain Data Flow", in The Characteristics of Paral-

lel Algorithms, Jamieson and Douglass (ed.), Cambridge, MA, MIT

Press, 1987, pp. 335-349.

[3] D. C. DiNucci, "A simple and efficient process and communication

abstraction for network operating systems", LNCS vol. 1199

(CANPC'97 Proceedings), pp.31-45, Berlin, Springer-Vedag, 1997, pp.
31-45.

[4] D.C. DiNucci,"CDS",http'Jlwww.nas.nasa.gov/NAS/ToolstProjecls/COS

[5] D. C. DiNucci, "A formal model for architecture-independent parallel

software engineering", Ph.D. Dissertation, Oregon Graduate Institute,

1991, also available at ftp:lfftp.netcom.comflyobtdgfflnucc_he_s.ps.Z

[6l D. C. DiNucci and R. G. Babb II, "Design and implementation of parallel

programs with LGDF2", COMPCON'89, San Francisco, 1989, pp. 102-
107.

[7l D.C. DiNucci and R. G. Babb II, "Practical support for parallel program-

ming", Proc. 21st HICSS Software Track, 1988, IEEE, 109-118.

[8] K. P. Eswaran et al, "The notions of consistency and predicate locks in a

database system", CACM, vol. 19, 11 (November 19"/6),pp. 624-633.

[9] R. Milner, "A calculus of communicating syslems", [.ecture Notes of

Computer Science, vol. 92, Berlin, Springer-Verlag, 1980.

[10] J. Peterson, "PEN net theory and the modeling of systems", Englewood

Cliffs, N J, Prentice-Hall, 1981.

[1 llV. R. Pratt, '.'Modeling concurrency with partial orders", International

Journal of Parallel Programming, vol. 15, 1(February 1986), pp. 33-71.

[12] T. vord3icken, "U-Net: A user-level network interface for parallel and dis-

tributed computing", in ACM Syrup. on Operating System Principles,

Copper Mountain, CO, Dec. 1995, pp. 303-316.

